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Microbunching of relativistic electrons using a two-frequency laser
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A high power two-frequency laser can be used to modulate the axial momentum of a copropagating rela-
tivistic electron beam. The net work done on each electron is accounted for almost entirely by the axial electric
field of the laser even when approaching the one-dimensional limit. After interacting with the laser, the
electron beam can be bunched either by a long drift space or a dispersive optic. We give an example in which
a 2.5-TW CG laser and a chicane compressor are used to transform a constant stream of 16-MeV electrons
into a train of 60-fs microbunches, each containing 10 pC of ch4&H63-651X98)09601-9

PACS numbsg(s): 52.40.Nk, 52.20.Dq, 52.75.Di

I. INTRODUCTION where vy is the relativistic Lorentz factor of the electron. In
Refs.[2—4], F(z) was determined by neglecting the excur-

Many plasma based accelerators, such as the plasma besien of the electron away from the axis during its quiver
wave acceleratofl], employ a periodic accelerating struc- motion. This implied that the effects of the axial laser field,
ture with a wavelength on the order of 1@0n. In order for E,, were not considered. The validity of this model was
such accelerators to produce monoenergetic beams, the isupported by numerical calculations which did takginto
jected particles must be confined to a small region of phasaccount. In this work, we consider a regime whEgecannot
within each period of this structure. Femtosecond electrome neglected. An analytical solution is found for the energy
pulses are therefore needed. We propose a microbunchirgpange due t&,, and an analytical scaling is found for the
technique which generates such ultrashort electron pulses lisportance ofE, relative to thevx B force.
exploiting the interaction between a two-frequency laser The regime investigated in this paper differs further from
beam and a copropagating relativistic electron beam inhe one investigated in Ref§2—4] in that we consider a
vacuum. This interaction modulates the electron momentursmall perturbation to the electron energy, while R¢®s-4]
at the frequency of the beat envelope associated with theonsidered a drastic energy change. These are both special
interference of the two laser lines. The momentum-cases of a more general analysis. To see this, rewrit¢1q.
modulated electrons can subsequently be transformed intoas follows:
train of microbunches using a magnetic compression
scheme. This approach could be particularly advantageous 1d 5
when applied to the plasma beatwave accelerator because the 2az? ~F@. ()
same laser could both bunch the injected particles and drive
the plasma wave acceler_atlng structure. The electron bunChRfext, let y=yo+ 8, where y, is the relativistic Lorentz
would then be automatically timed such that they are a"factor prior to the interactioni.e., atz= — ). Then
injected at equivalent phases of the plasma wave. o ' '

The process described above falls into the general cat-
egory of the acceleration of charged particles by intense laser
fields in vacuum, which has been the subject of active re-
search for many years. In fact, a problem similar to the one
analyzed here has been discussed in the papers by SprangieSy is sufficiently large, the first term can be neglected, and
et al. [2] and Esarayet al. [3], and was further elaborated the energy change will scale &2, whereP is the laser
upon by Hafiziet al.[4]. In these papers it was proposed thatpower. This was the case considered in Rgfs4]. If dy is
relativistic electrons could be substantially accelerated by cosufficiently small, the second term can be neglected, and the
propogating them with a high power two-frequency laser.energy change will scale linearly witR. This is the case
The problem was analyzed both analytically and via threeconsidered here.
dimensional numerical simulations. The outline of the remainder of this paper is as follows. In

The problem presented here is related to the one present&kc. 11, we analyze the interaction between a relativistic elec-
in Refs.[2-4] as follows. In both cases, the change in thetron and a two-frequency laser beam in vacuum. In Sec. lIl,
energy of an electron propagating coaxially with a two-we present three-dimensional numerical calculations of the
frequency laser is to be determined. This quantity is given ireffect of a two-frequency laser on a realistic electron beam.
both cases by integrating an expression of the form These calculations include radial and space charge effects

not accounted for by the paraxial analysis. Finally, in Sec.

IV, we numerically simulate the compression of a laser-
d_?’_ @ 1) modulated electron beam with space charge by a magnetic
dz vy’ compression device.

da ldaz—F 3
Yogz0Y 5 470" " (2). 3
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Il. PARAXIAL THEORY Wo
. . . a(z)=ag—cosb, 10
We wish to determine the net change in the momentum of (2)=2 w (10

a highly relativisitic electron injected directly down the axis
of a two-frequency laser beam. In the purely one-Where
dimensional limit, the momentum of the electron will never

converge to a stable value since the laser fields persist a, ek (11)

throughout all space. A paraxial model must be used in :km02'
which the fields due to a Gaussian beam are expanded lin-
early about the axis of propagati¢8l: The transverse position of the electron is then computed
from
Wo
Ex=Eop -, cosb cosp, (49 dx a2 2y 1
Bzcd—z—vx:«x—mcosﬁ~7a(z)cos¢. (12
Wy X z . : ;
EZ=2E0—0 —2cosl)<sin¢——co&1>), (4b) Th|s imposes the requirement tr_mK k\_/voly, since other-
W kw Zy wise the electron would be radially ejected from the laser
beam.
Wo The axial momentum of the electron evolves according to
B,=E;—-cosb cosp, (40
! . __¢ B +E 13
dz  clc ¥V % (13
3 Wy i z
B:= 2By, mcosb(swb— Z—Oco&b). (49 sincev,~c. Dividing both sides bymc results in the nor-
malized equation
Here wy is the spot size at best focug, is the Rayleigh
length,w=w,(1+z%/z3)*? is the spot size at a given k is dy _ 1(28 ‘E ) (14)
the average wave number of the two laser lingsis the dz me\c ¥ TE)

phase relative to an optical cycle, addis the phase relative
to the beat pattern. The phase variables are expressed \Where, strictly speakingy=p,/mc. Note, however, that ac-

terms of the coordinates of the electron, cording to Eq.(9) the transverse momentum of the electron
eventually vanishes. It follows thag will eventually con-
¢= ot kZ, (5)  verge to the relativistic Lorentz factor associated with the
electron, providedy>1.
d=Py+Kz, (6) In analyzing Eq.(14), it is useful to write out thevX B
term separately from the electric field term. Substituting Eqgs.
where (4c) and(9) into Eqg. (14), we find that
dy k :
1 k hatd - 2
K:k(E—l)%z_,yzl (7) <dz)v><5 2’)’a(2) S|n(2¢) (15)
Substituting Eq.(12) into Eq. (4b), and inserting the result
Ak( 1 ) Ak into Eq. (14), we find that
=Szt~ ®
2 IBZ 4’}/2

dy k 5
(E)E ~2,%%

i(1+cosz¢)—sin2¢> €(2), (16)

andAk is the wave-number difference between the two laser %o
lines. Here we assume that any perturbations to the axial
momentum of the electron do not appreciably change its vewhere
locity. Also, the well knownsr phase shift through the laser’s
focal region is neglecteld]. These assumptions are removed
in Sec. lll, where it is foundh postiorithat they are valid.

To compute the axial forces on the electron its transverse
mOtionS must fiI’St be Speciﬁed. In so far as the problem |$’he parametere Compares the peak force exerted by the
nearly one dimensional, conservation of canonical momenayia| electric field with that exerted by thex B force. This

17

z)= )
<2 K rew?

tum implies that quantity is maximized at the origin, where
a(z)c 1 A y\?
Ux= sing, 9 e(0)=—~(—1) : (18)
KZO WO r

wherea(z) is the slowly varying part of the normalized vec- More significantly, inspection of Eq(16) shows that the
tor potential. That is, force exerted by the electric field contains a slowly varying
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term. This term arises due to the fact that the quiver excur- TABLE . Bunching regime.

sion is in phase with one of the axial electric field terms, _

which itself contains the quiver excursion. The effect of theRequirement Reason
slvc\)lwlyfrv?;yéngttferm is to continuously push the electron y>1 Axial velocity constant

away ro est focus. Ak/k<1 Allow neglect of rapidly varying forces

The final state of the electron is found by putting together 27, JKAKI2
<2

Egs.(15) and(16) and integrating over the whole line: 72 AHO_W neglect of _rap'dly varying forces
v°>AKzy/8m Linear expansion of beat envelope
ag<<kwg/y Keep electron near the laser axis

k (= z
5y:2—yf_wa(z)2 ez—o(1+cosz¢)+(1—e)sin2¢ dz.

(19 slips very little with respect to the beat pattern over a Ray-

. - . 2 .
This integral can be approximated by discarding the rapidly€igh length, or, equivalently, i“>Akz/8m. In this case,
varying terms. The error caused by this neglect is estimated

2 o\ —1
as follows. Consider, for example, the<B term over a fi- 5, _ had iKJW (sin20,+Kz cosabo)| 1+ 2| dz.
nite interval of integration: 2y kwfy J-= ° ° z
(25
k [z 5
I= 2_7J21 a(z)"sin(2xz)dz. (20) The cosine term vanishes since it is odd. The sine can be

pulled outside the integral. The remaining integral is well

placed by its second order Taylor expansion, in which case 2 Ak
T [ e i
K 1 ( )dz ( )2 (21) 572—2—’)/(:(@ PTSII’IZ(I)O. (26)
=——(2—71)—a(z2)*,
2y 442 2 dz?

Expressing the laser power in terawatts, we have, for an elec-

provided the limits of integration are selected from the dis-t"oN:

crete set of valuesn(+ 1/2)#/ k, wheren is an integer. This 180 Ak

particular integration interval can only be made small in the Sy=——(P[TW])—sin2®,. (27
sense required above if the electron slips through many laser Y k

wavelengths while passing through the interaction region

That is, we requirecz> 24 or, equivalently,y><kzy/4. If Comparison of Eqs(26) and (22) shows that the contribu-

. . . . S0 tion of the rapidly varying terms is indeed negligible pro-
this relation holds, expressiof2l) can in principle be 404 thatak/k is small, ande(0)2<Ak/k. In other words,

summed over many small intervals to yield the value of thethere must be many optical cycles within a beat period, and

|dntttagral_ OV:Lthe wlhc_)le IIIEneé 1Atn esU_m;elte f?r ;h';q“f“.‘“rt]y 'Sthe electron must slip through many optical cycles within the
etermined by applying Eq21) to an interval ofm Rayleig interaction region. This latter requirement is qualitatively the

lengths centered at the origin. If the beat envelope is phase. me as the one discussed in the context of &2}, but now

. . 2 . . . . .
such that the second derivativeal(fz)“ is maximized in this takes the formy2<zo\kAK/2, which is more strict than the

interval, we obtain - . , .
previous relation. For the reader’s convenience, Table | sum-
2 2 marizes the inequalities involved in obtaining Eg6).
T e Ak . R D
(_) p( - 4 6(0)2) , (22) Equation(26) indicates that the energy perturbation is de-
mc k? pendent on the electron’s phase with respect to the beat pat-
tern at best focus. For a constant stream of electrons, this

(0Y)tast= 2_70

whereP is the average power in the beat pattern. obviously translates into the foretold temporal modulation.
Next, we evaluate the slowly varying term Equation(26) also reveals that the energy perturbation does
K (o not depend on how tightly the laser is focused, despite the
Sy= _J' a(z)ze(z)idz. (23) faqt that only the axial fields were I_<ept _in the calculation.
2y) - Zy Evidently, as the one-dimensional limit is approached, the
_ _ interaction region becomes longer in the same degree that the
Integration by parts yields axial fields become smaller.
2 o0
Sy= 8 % {_ cos® IIl. NUMERICAL CALCULATIONS
2 2 2
¥ KWo L The above analytical model suffers from two basic limi-
. o\ —1 tations. First, it neglects radial effects. Second, it requires
- KJ sin2d| 1+ 2_2 dz (24)  thatalarge number of quiver motions be executed within the
—o z; interaction region. We overcome these limitations using a

three-dimensional3D) numerical calculation in which each
The first term in the curly braces obviously vanishes. Theparticle of a realistic electron beam is independently pushed
second can be evaluating by using a linear expansion of théarough a known laser field. The field due to each laser line
sine function about the origin. This is justified if the electronis described by the following set of equatidrs:
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TABLE Il. Simulation parameters. 1.0
CO, Laser Electron beam 0.5 5
Power 25 TW Current 30A &y 00 f ,\vl\l\ﬂ N\N\N\N
Wavelength 10.3, 10.6m  Energy 16 MeV+ .025% ; i
Rayl. len. () 1.2 cm Emittance 0.0 mm mrad -0.5
Best focus ) 200 um Best focus 5Q:m
20 -15 -10 -5 0 5 10 15 20
Longitudinal Position (cm)
Wo r2
Ex=Eo—-exp — —|cosp, (283 o . :
W w FIG. 1. The track left by an individual particle through longitu-

dinal phase space. The particle is phased for maximum energy gain.

2
EZ:2EOVE Lexp( — r_) (sin¢>—£cos¢), (28b) demonstrated in Fig. 2, which shows th_ree tracks, each isp-
W w? Zy lating the effects of one of three terms in the overall longi-
tudinal force. As predicted, the part of the axial electric field
Wo r2 in phase with the qui\_/er e_xcursicﬁﬁig. 2(_a)] exerts a unidi—
— — | cosp, (280 rectional force resulting in a substantial energy gain. The
part of the electric field out of phase with the quiver excur-
sion [Fig. 2(b)] causes a much smaller energy loss. The
X B force has no noticeable net effd&ig. 2(c)].
' Next, we inject the electron beam described in Table II.
(280) The particles are copropagated 40 cm with the laser beam,

Wy Y r2\| . z
BZ=2EOW@ex _F S|n¢—z—ocos¢

with the phase given by 1.0 » ;
r2 z z 05} @)
d=kz— wt+ﬁz—0—tan*1 z_o)' (29 8y 00| Vs
The total field is represented as the sum of the fields due to ~ -05} \J/

each laser line. The code also has a limited ability to simu-
late space charge forces. This is done by calculating the rms
envelope of all the particles each time step, computing the
dimensions of the equivalent uniform ellipsoid, and applying
the space charge field as given by Lapostplle A numeri-
cal calculation much like the one described abdweely [ i
without the space charge mogelas applied in Ref[4] to 05k (b)
the regime appropriate to accelerator applications. Bl
The experiment to be simulated is summarized in Table §y g9 —r
Il. The electron beam is modeled after a 16-MeV photoin- ! VVV"
jector linac currently under construction at UCL8]. The -0.5
optical beam is a 2.5-TW C@laser running on the 10.6- and [
10.3um lines such as the one under construction at ‘1-0_20 5 0 5 0
Brookhaven 9]. Tentatively applying Eq(26) to the param- o »
eters of Table Il predicts an energy perturbation of approxi- Longitudinal Position (cm)
mately 1.2%. Further scrutiny, however, reveals that these
parameters begin to test the limits of the analytical model.
The number of optical cycles slipped through within the in- ’ (c)
teraction region is on the order of unity, and the electron ‘
waist may be large enough to lead to measureable radial 5y ’ ! r m
effects. 05F ,
To isolate the effects of the slow slippage rate, we inject a s V\/\/\
single on-axis electron. It is phased such that when it reaches 0.0 } ~
best focus it sits at the maximum gradient of the beat pattern.
The electron’s track through longitudinal phase space is
shown in Fig. 1. The final energy perturbation is 1%, which Longitudinal Position (cm)
is closer to the analytically predicted value than one might
expect given the value @f(0) for the parameters being mod-  FIG. 2. Decomposition of longitudinal force&) term of E, in
eled. Evidently, the rapidly oscillating forces contribute evenphase withE, ; (b) term of E, out of phase wittE, ; (c) longitudi-
less to the final energy perturbation than expected. This isal vx B force.

1.0k N S
20 15 10 5 0 5 10 15 20

Longitudinal Position (cm)

1.0

5 10 15 20

AN

20 45 -0 b 0 5 10 15 20
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FIG. 3. Temporal structure of the beam 20 cm beyond fo@)s: Time (ps)

longitudinal phase space structui®) correlation between radial FIG. 4. Temporal structure of a 40-pC pulse 620 cm: (a)

blowout and time. The arrows emphasize that the temporally compngitudinal phase space structur®) correlation between radial
pressing particles can be identified with the minimally blown-outpowout and time.

particles.

represents a reasonable estimate of the overall space charge
whose focus occurs at the midpoint of the interaction. Spaceffect.
charge is neglected. Figure 3 shows the temporal structure of
the beam at the end of the 40 cm. Figufe)3hows that in IV. COMPRESSION
addition to acquiring the expected momentum modulation, _ ) ) ) .
the beam is longitudinally heated in regions where the aver- A béam for which momentum is an increasing function of
age momentum decreases with time. Figufi® 3hows that, time will automatically compress as it propagates. Iq particu-
coincident with the longitudinal heating, radial ponderomo-lar; the laser-modulated beams described above will reach a
tive blowout occurs. The correlation between radial blowoutongitudinal waist after propagating a distance given by
and time follows simply from the periodicity of the ponder-
motive force in a beat pattern. The correlation between blow- _c
out and longitudinal heating follows from the fact that the P
interaction between the particle and the laser is cut short if
the particle exits the laser radially. A shortened interactionUsing the parameters of Table II, for example, a longitudinal
region makes it possible for the rapidly oscillating axial waist is reached after approximately 7 m. However, any rea-
forces to permanently change the electron’s momentunsonable amount of charge on the beam will prevent effective
Since the exact momentum change depends on the particleé®mpression because of space charge forces acting over such
phase within an optical cycle—an effectively random a long drift spacé10]. A magnetic compression system can
guantity—the beam heats up. overcome this problem by bringing the beam to a waist more

Finally, we inject 40 pC of electrons at 30 A. Figure 4 suddenly. One such system is the chicane comprd4ddgr

shows the temporal structure of the beam, again evaluated Zhown in Fig. 5. A chicane consists of four rectangular di-
cm from the focus. The space charge effects are not severpole magnets which cause low energy particles to trace out a
The longitudinal phase structure aquires a small overallonger path than high energy particles to get between the
slope, while the radial structure is nearly identical to the one
shown in Fig. 3. Unfortunately, this space charge calculation

mc?\2 , k  0.009 , k 20
o Ve Wi a0

. . . . . 20cm to e eSS 5
is not entirely correct since it averages over any density fluc- | -’ o “C'I;l’r‘c—m’{ Fn‘f’
tuations within the beam. This is appropriate in the half —

space before the focus, but several centimeters beyond the . |
focus the beam begins to acquire the longitudinal density Track | |
modulation implied by Fig. ). This inhomogeneity throws 600 pm Output

off the space charge calculation during the last few centime- Aperture Plane

ters of the interaction. Nevertheless, because this error accu- FIG. 5. Chicane compressor. The rectangles are the pole pieces
mulates over only about 25% of the interaction length, Fig. 4of the magnets.




1040 GORDON, CLAYTON, KATSOULEAS, MORI, AND JOSHI 57

04 — : 04 ——
0.3 E— b ; 0.3 ? a 'uﬁ 52
PR ACTI R - S A B
E £ i 0.1 fond 3 -
01 E i i 2 € E f }
E Foo: £ &y 00 F.. P
SY 0.0 E . . 4 5 ; E . 5 Hd
01 F o { g :?{ 01 E T g f;
02 B o d o ; 0.2 E. # %
02 -y i o4 : : N j
03 f k7 : '8-2 ] =
20000 -10000 0.0 1000.0  2000.0 -2000.0  -1000.0 00 1000.0  2000.0
Time (fs) Time (fs)
2500 —— 250.0 —
[72] C N
£ 2000  (b) {\\ 2 2000 | (b) A
. z £ g /
_c% 150.0 : $ 150.0 : /
= 1000 £ / § 100.0 | , \
L F [
: =t ,
E 500 : o \‘: v O 500 ¢ A
o 0.0 ST it ..':_.-/ - --IT. .‘. ::v:‘:_‘iT‘_TP j—— 0.0 :LFL-'-.\;-._.‘-.:;:_»%..- 2 .'. - |...-.‘.'.‘.'—.‘\_-
-400.0 -200.0 0.0 200.0 400.0 2400.0 -200.0 0.0 200.0 400.0
Time (fs) Time (fs)

) o FIG. 7. Compression of the 40-pC beafa) longitudinal phase

FIG. 6. Compression of zero charge beaf@ longitudinal  sirycture after 60Qsm aperture;(b) one of the buckets before

phase structure after 6Qom aperture(b) one of the buckets before (dashed ling and after (solid line) compression. The particular
(dashed lingand after(solid line) compression. bucket shown in(b) contains 10 pC.

same two points. This compresses regions of the beam whetadinal electron temperature, and the charge. In the zero-

the momentum increases with time. charge case, the maximum compression ratio is given simply
In the case of the laser-modulated beams described abovey

the particles for which momentum decreases with time can

be eliminated using an aperture, since these are the same 'compressed:min(ﬂ7]

particles that get expanded radially. For our specific system a lo o, )’

600-um aperture is placed 20 cm from the laser focus. The

first chicane pole face is placed 5 cm from the aperture. Wavhereo, represents the longitudinal temperature of the elec-

consider the effect of this system on the electron beams ddtons. The factor of 7 is the largest compression ratio attain-

scribed by Figs. 3 and 4. able given a sinusoidal velocity perturbatigi8]. Neverthe-
To model propagation through the chicane, we again use !gss, in the case of Fig. 6, for example, the compression ratio

3D computer code. The fringing fields of the four dipoles are!S @Pout 10. This suggests that, remarkably, the velocity per-

modeled according to the prescription of Efigé]. The gap turbation induced by the laser contains some of the harmon-

width of the dipoles is chosen to be 2 cm. Space charge &S of a sawtoot_h wave. In the case of finite space chayge,

modeled as before, only now we run one “bucket” of elec- computer modeling shows that at around 100 A the effective-

; L . . ness of the chicane starts to be seriously limited. For a more

trons at a time. This is appropriate since as each bucket com- : :

. ) . : complete discussion of space charge effects on a compress-

presses, its own space charge field will affect it much more g electron bunch, see R4L0]

than the fields due to other buckets. Figure 6 shows the result ' '
of running the zero-charge beam from Fig. 3 through the

system. The field in the dipoles was 1.6 kG. In Fi¢p)pthe V. CONCLUSIONS

longitudinal phase structure immediately after the @08- A high power two-frequency laser can be used to modu-
aperture is depicted. This merely emphasizes that nearly all<l;1te the momentum of a relativistic electron beam. The
the unwanted particles are eliminated by the aperture. In Figyachanism described in this work specializes to the case in
6(b), the current distribution associated with the first bucketyhich electrons slip through many optical cycles but only a
is shown before and after the chicane. The compressed pulg@ction of a beat cycle while passing through the interaction
is about 40-fs full width at half maximurFWHM). Figure 7 regjon. The axial electric field of the laser plays a crucial role
shows the result of running the 40 pC pulse from Fig. 4even for a large laser spot size or, equivalently, high
through the system. The field in the dipoles was 1.75 kKGf-number focusing. Computer modeling shows that a
The compressed pulse in this case is about 60-fs FWHM, ang.5-TW CO, laser combined with a chicane compressor can
contains 10 pC of charge. transform a 30-A beam of 16-MeV electrons into a train of
The limits on effective compression are determined by the&0 fs microbunches each containing 10 pC. This method of
depth of the laser-induced momentum modulation, the longimicrobunch formation looks particularly attractive for inject-

(31)
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