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Microbunching of relativistic electrons using a two-frequency laser
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~Received 10 July 1997!

A high power two-frequency laser can be used to modulate the axial momentum of a copropagating rela-
tivistic electron beam. The net work done on each electron is accounted for almost entirely by the axial electric
field of the laser even when approaching the one-dimensional limit. After interacting with the laser, the
electron beam can be bunched either by a long drift space or a dispersive optic. We give an example in which
a 2.5-TW CO2 laser and a chicane compressor are used to transform a constant stream of 16-MeV electrons
into a train of 60-fs microbunches, each containing 10 pC of charge.@S1063-651X~98!09601-9#

PACS number~s!: 52.40.Nk, 52.20.Dq, 52.75.Di
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I. INTRODUCTION

Many plasma based accelerators, such as the plasma
wave accelerator@1#, employ a periodic accelerating stru
ture with a wavelength on the order of 100mm. In order for
such accelerators to produce monoenergetic beams, th
jected particles must be confined to a small region of ph
within each period of this structure. Femtosecond elect
pulses are therefore needed. We propose a microbunc
technique which generates such ultrashort electron pulse
exploiting the interaction between a two-frequency la
beam and a copropagating relativistic electron beam
vacuum. This interaction modulates the electron momen
at the frequency of the beat envelope associated with
interference of the two laser lines. The momentu
modulated electrons can subsequently be transformed in
train of microbunches using a magnetic compress
scheme. This approach could be particularly advantage
when applied to the plasma beatwave accelerator becaus
same laser could both bunch the injected particles and d
the plasma wave accelerating structure. The electron bun
would then be automatically timed such that they are
injected at equivalent phases of the plasma wave.

The process described above falls into the general
egory of the acceleration of charged particles by intense l
fields in vacuum, which has been the subject of active
search for many years. In fact, a problem similar to the o
analyzed here has been discussed in the papers by Spr
et al. @2# and Esarayet al. @3#, and was further elaborate
upon by Hafiziet al. @4#. In these papers it was proposed th
relativistic electrons could be substantially accelerated by
propogating them with a high power two-frequency las
The problem was analyzed both analytically and via thr
dimensional numerical simulations.

The problem presented here is related to the one prese
in Refs. @2–4# as follows. In both cases, the change in t
energy of an electron propagating coaxially with a tw
frequency laser is to be determined. This quantity is given
both cases by integrating an expression of the form

dg

dz
5

F~z!

g
, ~1!
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at-

in-
e
n
ing
by
r

in
m
he
-

a
n
us
the
ve
es
ll

t-
er
-
e
gle

t
o-
.
-

ted

-
n

whereg is the relativistic Lorentz factor of the electron. I
Refs. @2–4#, F(z) was determined by neglecting the excu
sion of the electron away from the axis during its quiv
motion. This implied that the effects of the axial laser fie
Ez , were not considered. The validity of this model w
supported by numerical calculations which did takeEz into
account. In this work, we consider a regime whereEz cannot
be neglected. An analytical solution is found for the ener
change due toEz , and an analytical scaling is found for th
importance ofEz relative to thev3B force.

The regime investigated in this paper differs further fro
the one investigated in Refs.@2–4# in that we consider a
small perturbation to the electron energy, while Refs.@2–4#
considered a drastic energy change. These are both sp
cases of a more general analysis. To see this, rewrite Eq~1!
as follows:

1

2

d

dz
g25F~z!. ~2!

Next, let g5g01dg, where g0 is the relativistic Lorentz
factor prior to the interaction~i.e., atz52`). Then,

g0

d

dz
dg1

1

2

d

dz
dg25F~z!. ~3!

If dg is sufficiently large, the first term can be neglected, a
the energy change will scale asP1/2, whereP is the laser
power. This was the case considered in Refs.@2–4#. If dg is
sufficiently small, the second term can be neglected, and
energy change will scale linearly withP. This is the case
considered here.

The outline of the remainder of this paper is as follows.
Sec. II, we analyze the interaction between a relativistic e
tron and a two-frequency laser beam in vacuum. In Sec.
we present three-dimensional numerical calculations of
effect of a two-frequency laser on a realistic electron bea
These calculations include radial and space charge eff
not accounted for by the paraxial analysis. Finally, in S
IV, we numerically simulate the compression of a las
modulated electron beam with space charge by a magn
compression device.
1035 © 1998 The American Physical Society
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II. PARAXIAL THEORY

We wish to determine the net change in the momentum
a highly relativisitic electron injected directly down the ax
of a two-frequency laser beam. In the purely on
dimensional limit, the momentum of the electron will nev
converge to a stable value since the laser fields pe
throughout all space. A paraxial model must be used
which the fields due to a Gaussian beam are expanded
early about the axis of propagation@5#:

Ex5E0

w0

w
cosF cosf, ~4a!

Ez52E0

w0

w

x

kw2
cosFS sinf2

z

z0
cosf D , ~4b!

By5E0

w0

w
cosF cosf, ~4c!

Bz52E0

w0

w

y

kw2
cosFS sinf2

z

z0
cosf D . ~4d!

Here w0 is the spot size at best focus,z0 is the Rayleigh
length,w5w0(11z2/z0

2)1/2 is the spot size at a givenz, k is
the average wave number of the two laser lines,f is the
phase relative to an optical cycle, andF is the phase relative
to the beat pattern. The phase variables are expresse
terms of the coordinates of the electron,

f5f01kz, ~5!

F5F01Kz, ~6!

where

k5kS 1

bz
21D'

k

2g2
, ~7!

K5
Dk

2 S 1

bz
21D'

Dk

4g2
, ~8!

andDk is the wave-number difference between the two la
lines. Here we assume that any perturbations to the a
momentum of the electron do not appreciably change its
locity. Also, the well knownp phase shift through the laser
focal region is neglected@6#. These assumptions are remov
in Sec. III, where it is founda postiori that they are valid.

To compute the axial forces on the electron its transve
motions must first be specified. In so far as the problem
nearly one dimensional, conservation of canonical mom
tum implies that

vx52
a~z!c

g
sinf, ~9!

wherea(z) is the slowly varying part of the normalized ve
tor potential. That is,
f

-

ist
n
in-

in

r
ial
e-

e
is
n-

a~z!5a0

w0

w
cosF, ~10!

where

a05
eE0

kmc2
. ~11!

The transverse position of the electron is then compu
from

bzc
dx

dz
5vx⇒x5

a~z!

bzkg
cosf'

2g

k
a~z!cosf. ~12!

This imposes the requirement thata0!kw0 /g, since other-
wise the electron would be radially ejected from the la
beam.

The axial momentum of the electron evolves according

dpz

dz
52

e

cS vx

c
By1EzD , ~13!

sincevz'c. Dividing both sides bymc results in the nor-
malized equation

dg

dz
52

e

mc2S vx

c
By1EzD , ~14!

where, strictly speaking,g5pz /mc. Note, however, that ac
cording to Eq.~9! the transverse momentum of the electr
eventually vanishes. It follows thatg will eventually con-
verge to the relativistic Lorentz factor associated with t
electron, providedg@1.

In analyzing Eq.~14!, it is useful to write out thev3B
term separately from the electric field term. Substituting E
~4c! and ~9! into Eq. ~14!, we find that

S dg

dzD
v3B

5
k

2g
a~z!2sin~2f!. ~15!

Substituting Eq.~12! into Eq. ~4b!, and inserting the resul
into Eq. ~14!, we find that

S dg

dzD
Ez

5
k

2g
a~z!2F z

z0
~11cos2f!2sin2fGe~z!, ~16!

where

e~z!5
2

kkw2
. ~17!

The parametere compares the peak force exerted by t
axial electric field with that exerted by thev3B force. This
quantity is maximized at the origin, where

e~0!5
1

kz0
'S l

w0

g

p D 2

. ~18!

More significantly, inspection of Eq.~16! shows that the
force exerted by the electric field contains a slowly varyi
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57 1037MICROBUNCHING OF RELATIVISTIC ELECTRONS . . .
term. This term arises due to the fact that the quiver exc
sion is in phase with one of the axial electric field term
which itself contains the quiver excursion. The effect of t
slowly varying term is to continuously push the electr
away from best focus.

The final state of the electron is found by putting togeth
Eqs.~15! and ~16! and integrating over the whole line:

dg5
k

2gE2`

`

a~z!2Fe z

z0
~11cos2f!1~12e!sin2fGdz.

~19!

This integral can be approximated by discarding the rap
varying terms. The error caused by this neglect is estima
as follows. Consider, for example, thev3B term over a fi-
nite interval of integration:

I 5
k

2gEz1

z2
a~z!2sin~2kz!dz. ~20!

If the integration interval is small enough,a(z)2 can be re-
placed by its second order Taylor expansion, in which ca

I 5
k

2g

1

4k2
~z22z1!

d2

dz2
a~z!2, ~21!

provided the limits of integration are selected from the d
crete set of values (n11/2)p/k, wheren is an integer. This
particular integration interval can only be made small in
sense required above if the electron slips through many l
wavelengths while passing through the interaction regi
That is, we requirekz0@2p or, equivalently,g2!kz0/4p. If
this relation holds, expression~21! can in principle be
summed over many small intervals to yield the value of
integral over the whole line. An estimate for this quantity
determined by applying Eq.~21! to an interval ofp Rayleigh
lengths centered at the origin. If the beat envelope is pha
such that the second derivative ofa(z)2 is maximized in this
interval, we obtain

~dg! fast5
p

2gcS e

mc2D 2

PS Dk2

k2
1e~0!2D , ~22!

whereP is the average power in the beat pattern.
Next, we evaluate the slowly varying term

dg5
k

2gE2`

`

a~z!2e~z!
z

z0
dz. ~23!

Integration by parts yields

dg5
a0

2

2g

z0

kw0
2H 2Fcos2F

w2 G
2`

`

2KE
2`

`

sin2FS 11
z2

z0
2D 21

dzJ . ~24!

The first term in the curly braces obviously vanishes. T
second can be evaluating by using a linear expansion of
sine function about the origin. This is justified if the electr
r-
,

r

y
d

e

-

e
er
.

e

ed

e
he

slips very little with respect to the beat pattern over a R
leigh length, or, equivalently, ifg2@Dkz0/8p. In this case,

dg5
a0

2

2g

z0

kw0
2

KE
2`

`

~sin2F01Kz cos2F0!S 11
z2

z0
2D 21

dz.

~25!

The cosine term vanishes since it is odd. The sine can
pulled outside the integral. The remaining integral is w
known to equalpz0. Rearranging various terms, we find th

dg52
p

2gcS e

mc2D 2

P
Dk

k
sin2F0 . ~26!

Expressing the laser power in terawatts, we have, for an e
tron,

dg52
180

g
~P@TW# !

Dk

k
sin2F0 . ~27!

Comparison of Eqs.~26! and ~22! shows that the contribu
tion of the rapidly varying terms is indeed negligible pr
vided thatDk/k is small, ande(0)2!Dk/k. In other words,
there must be many optical cycles within a beat period, a
the electron must slip through many optical cycles within t
interaction region. This latter requirement is qualitatively t
same as the one discussed in the context of Eq.~22!, but now
takes the formg2!z0AkDk/2, which is more strict than the
previous relation. For the reader’s convenience, Table I s
marizes the inequalities involved in obtaining Eq.~26!.

Equation~26! indicates that the energy perturbation is d
pendent on the electron’s phase with respect to the beat
tern at best focus. For a constant stream of electrons,
obviously translates into the foretold temporal modulatio
Equation~26! also reveals that the energy perturbation do
not depend on how tightly the laser is focused, despite
fact that only the axial fields were kept in the calculatio
Evidently, as the one-dimensional limit is approached,
interaction region becomes longer in the same degree tha
axial fields become smaller.

III. NUMERICAL CALCULATIONS

The above analytical model suffers from two basic lim
tations. First, it neglects radial effects. Second, it requi
that a large number of quiver motions be executed within
interaction region. We overcome these limitations using
three-dimensional~3D! numerical calculation in which eac
particle of a realistic electron beam is independently pus
through a known laser field. The field due to each laser l
is described by the following set of equations@5#:

TABLE I. Bunching regime.

Requirement Reason

g@1 Axial velocity constant
Dk/k!1 Allow neglect of rapidly varying forces
g2!z0AkDk/2 Allow neglect of rapidly varying forces
g2@Dkz0/8p Linear expansion of beat envelope
a0!kw0 /g Keep electron near the laser axis
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Ex5E0

w0

w
expS 2

r 2

w2D cosf, ~28a!

Ez52E0

w0

w

x

kw2
expS 2

r 2

w2D S sinf2
z

z0
cosf D , ~28b!

By5E0

w0

w
expS 2

r 2

w2D cosf, ~28c!

Bz52E0

w0

w

y

kw2
expS 2

r 2

w2D S sinf2
z

z0
cosf D ,

~28d!

with the phase given by

f5kz2vt1
r 2

w2

z

z0
2tan21S z

z0
D . ~29!

The total field is represented as the sum of the fields du
each laser line. The code also has a limited ability to sim
late space charge forces. This is done by calculating the
envelope of all the particles each time step, computing
dimensions of the equivalent uniform ellipsoid, and applyi
the space charge field as given by Lapostolle@7#. A numeri-
cal calculation much like the one described above~only
without the space charge model! was applied in Ref.@4# to
the regime appropriate to accelerator applications.

The experiment to be simulated is summarized in Ta
II. The electron beam is modeled after a 16-MeV photo
jector linac currently under construction at UCLA@8#. The
optical beam is a 2.5-TW CO2 laser running on the 10.6- an
10.3-mm lines such as the one under construction
Brookhaven@9#. Tentatively applying Eq.~26! to the param-
eters of Table II predicts an energy perturbation of appro
mately 1.2%. Further scrutiny, however, reveals that th
parameters begin to test the limits of the analytical mod
The number of optical cycles slipped through within the
teraction region is on the order of unity, and the electr
waist may be large enough to lead to measureable ra
effects.

To isolate the effects of the slow slippage rate, we injec
single on-axis electron. It is phased such that when it reac
best focus it sits at the maximum gradient of the beat patt
The electron’s track through longitudinal phase space
shown in Fig. 1. The final energy perturbation is 1%, whi
is closer to the analytically predicted value than one mi
expect given the value ofe(0) for the parameters being mod
eled. Evidently, the rapidly oscillating forces contribute ev
less to the final energy perturbation than expected. Thi

TABLE II. Simulation parameters.

CO2 Laser Electron beam

Power 2.5 TW Current 30 A
Wavelength 10.3, 10.6mm Energy 16 MeV6 .025%
Rayl. len. (z0) 1.2 cm Emittance 0.01p mm mrad
Best focus (w0) 200 mm Best focus 50mm
to
-
s
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e
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-
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es
n.
is

t

is

demonstrated in Fig. 2, which shows three tracks, each
lating the effects of one of three terms in the overall lon
tudinal force. As predicted, the part of the axial electric fie
in phase with the quiver excursion@Fig. 2~a!# exerts a unidi-
rectional force resulting in a substantial energy gain. T
part of the electric field out of phase with the quiver excu
sion @Fig. 2~b!# causes a much smaller energy loss. Thev
3B force has no noticeable net effect@Fig. 2~c!#.

Next, we inject the electron beam described in Table
The particles are copropagated 40 cm with the laser be

FIG. 1. The track left by an individual particle through longitu
dinal phase space. The particle is phased for maximum energy

FIG. 2. Decomposition of longitudinal forces:~a! term of Ez in
phase withEx ; ~b! term of Ez out of phase withEx ; ~c! longitudi-
nal v3B force.
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57 1039MICROBUNCHING OF RELATIVISTIC ELECTRONS . . .
whose focus occurs at the midpoint of the interaction. Sp
charge is neglected. Figure 3 shows the temporal structur
the beam at the end of the 40 cm. Figure 3~a! shows that in
addition to acquiring the expected momentum modulati
the beam is longitudinally heated in regions where the av
age momentum decreases with time. Figure 3~b! shows that,
coincident with the longitudinal heating, radial ponderom
tive blowout occurs. The correlation between radial blowo
and time follows simply from the periodicity of the ponde
motive force in a beat pattern. The correlation between blo
out and longitudinal heating follows from the fact that t
interaction between the particle and the laser is cut sho
the particle exits the laser radially. A shortened interact
region makes it possible for the rapidly oscillating ax
forces to permanently change the electron’s moment
Since the exact momentum change depends on the parti
phase within an optical cycle—an effectively rando
quantity—the beam heats up.

Finally, we inject 40 pC of electrons at 30 A. Figure
shows the temporal structure of the beam, again evaluate
cm from the focus. The space charge effects are not sev
The longitudinal phase structure aquires a small ove
slope, while the radial structure is nearly identical to the o
shown in Fig. 3. Unfortunately, this space charge calculat
is not entirely correct since it averages over any density fl
tuations within the beam. This is appropriate in the h
space before the focus, but several centimeters beyond
focus the beam begins to acquire the longitudinal den
modulation implied by Fig. 4~b!. This inhomogeneity throws
off the space charge calculation during the last few centim
ters of the interaction. Nevertheless, because this error a
mulates over only about 25% of the interaction length, Fig

FIG. 3. Temporal structure of the beam 20 cm beyond focus:~a!
longitudinal phase space structure;~b! correlation between radia
blowout and time. The arrows emphasize that the temporally c
pressing particles can be identified with the minimally blown-o
particles.
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represents a reasonable estimate of the overall space ch
effect.

IV. COMPRESSION

A beam for which momentum is an increasing function
time will automatically compress as it propagates. In parti
lar, the laser-modulated beams described above will rea
longitudinal waist after propagating a distance given by

L5
c

PS mc2

e D 2

g4
k

Dk2
5

0.009

P@TW#
g4

k

Dk2
. ~30!

Using the parameters of Table II, for example, a longitudi
waist is reached after approximately 7 m. However, any r
sonable amount of charge on the beam will prevent effec
compression because of space charge forces acting over
a long drift space@10#. A magnetic compression system ca
overcome this problem by bringing the beam to a waist m
suddenly. One such system is the chicane compressor@11#
shown in Fig. 5. A chicane consists of four rectangular
pole magnets which cause low energy particles to trace o
longer path than high energy particles to get between

-
t

FIG. 4. Temporal structure of a 40-pC pulse at120 cm: ~a!
longitudinal phase space structure;~b! correlation between radia
blowout and time.

FIG. 5. Chicane compressor. The rectangles are the pole pi
of the magnets.
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1040 57GORDON, CLAYTON, KATSOULEAS, MORI, AND JOSHI
same two points. This compresses regions of the beam w
the momentum increases with time.

In the case of the laser-modulated beams described ab
the particles for which momentum decreases with time
be eliminated using an aperture, since these are the s
particles that get expanded radially. For our specific syste
600-mm aperture is placed 20 cm from the laser focus. T
first chicane pole face is placed 5 cm from the aperture.
consider the effect of this system on the electron beams
scribed by Figs. 3 and 4.

To model propagation through the chicane, we again u
3D computer code. The fringing fields of the four dipoles a
modeled according to the prescription of Enge@12#. The gap
width of the dipoles is chosen to be 2 cm. Space charg
modeled as before, only now we run one ‘‘bucket’’ of ele
trons at a time. This is appropriate since as each bucket c
presses, its own space charge field will affect it much m
than the fields due to other buckets. Figure 6 shows the re
of running the zero-charge beam from Fig. 3 through
system. The field in the dipoles was 1.6 kG. In Fig. 6~a!, the
longitudinal phase structure immediately after the 600-mm
aperture is depicted. This merely emphasizes that nearl
the unwanted particles are eliminated by the aperture. In
6~b!, the current distribution associated with the first buc
is shown before and after the chicane. The compressed p
is about 40-fs full width at half maximum~FWHM!. Figure 7
shows the result of running the 40 pC pulse from Fig
through the system. The field in the dipoles was 1.75 k
The compressed pulse in this case is about 60-fs FWHM,
contains 10 pC of charge.

The limits on effective compression are determined by
depth of the laser-induced momentum modulation, the lon

FIG. 6. Compression of zero charge beam:~a! longitudinal
phase structure after 600-mm aperture;~b! one of the buckets before
~dashed line! and after~solid line! compression.
re
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tudinal electron temperature, and the charge. In the z
charge case, the maximum compression ratio is given sim
by

I compressed

I 0
5minH dg

sg
,7J , ~31!

wheresg represents the longitudinal temperature of the el
trons. The factor of 7 is the largest compression ratio atta
able given a sinusoidal velocity perturbation@13#. Neverthe-
less, in the case of Fig. 6, for example, the compression r
is about 10. This suggests that, remarkably, the velocity p
turbation induced by the laser contains some of the harm
ics of a sawtooth wave. In the case of finite space cha
computer modeling shows that at around 100 A the effecti
ness of the chicane starts to be seriously limited. For a m
complete discussion of space charge effects on a comp
ing electron bunch, see Ref.@10#.

V. CONCLUSIONS

A high power two-frequency laser can be used to mo
late the momentum of a relativistic electron beam. T
mechanism described in this work specializes to the cas
which electrons slip through many optical cycles but only
fraction of a beat cycle while passing through the interact
region. The axial electric field of the laser plays a crucial ro
even for a large laser spot size or, equivalently, h
f -number focusing. Computer modeling shows that
2.5-TW CO2 laser combined with a chicane compressor c
transform a 30-A beam of 16-MeV electrons into a train
60 fs microbunches each containing 10 pC. This method
microbunch formation looks particularly attractive for injec

FIG. 7. Compression of the 40-pC beam:~a! longitudinal phase
structure after 600-mm aperture;~b! one of the buckets before
~dashed line! and after ~solid line! compression. The particula
bucket shown in~b! contains 10 pC.
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ing and phase locking the electrons in the plasma beatw
accelerator which is driven by the same two-frequency la
beam. Experimental realization of this scheme would rep
sent an interesting first demonstration of useful laser ac
eration in vacuum.
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